Travaux dirigés de Thermodynamique n°5

Gaz parfaits

Exercice 1 : Variation d'entropie au cours de N transformations réversibles.

Soit une mole de gaz parfait monoatomique à la pression p=1bar et à température $T_0=450$ K (état 0). On comprime ce gaz de la pression p à p'=10bars de façon réversible et isotherme, puis, on détend le gaz de façon réversible et adiabatique de p' à p (état 1).

- 1. Représenter la suite des transformations dans un diagramme de Watt (p,V)
- 2. Calculer la variation d'entropie ΔS_I du gaz ainsi que la température finale T_I .
- 3. On recommence la même opération depuis l'état 1 $(p,T_1) \rightarrow$ état 2 $(p,T_2) \rightarrow ... \rightarrow$ état N (p,T_N) . Compléter le diagramme de Watt et déterminer la variation d'entropie du gaz après les N opérations ainsi que la température finale T_N et enfin la variation d'énergie interne ΔU_N . Faire les applications numériques pour N+5.
- 4. Voyez-vous une application? Discutez l'hypothèse du gaz parfait si N grand.

Exercice 2 : Détente de Joule Thomson

On envisage une détente de Joule Thomson subie par une mole de gaz parfait monoatomique (γ =1,67) de la pression p_A=1,5bar à la pression p_B=1bar.

Calculer la variation d'entropie du gaz lors de cette détente.

Exercice 3: Evolutions adiabatiques

Un cylindre parfaitement calorifugé, muni d'un piston mobile sans frottement, également calorifugé, contient un gaz parfait diatomique $(\gamma=1,4)$.

Initialement, la pression du gaz à l'intérieur du cylindre est p=0,5bar. La pression extérieure est p_{ext} =2p=1bar.

- 1. On amène le gaz de façon réversible à la pression p'=p_{ext}=2p=1bar.
 - a. Calculer le volume V' et la température T' à l'état final.
 - b. Calculer la création d'entropie.
- 2. En partant du même état initial que précédemment, on abandonne le piston et on laisse l'équilibre s'établir.
 - a. Calculer le volume V" et la température T" à l'état final.
 - b. Calculer la création d'entropie.

Exercice 4 : Mélange de deux gaz parfaits

Un cylindre, parfaitement calorifugé, de volume total 10L est séparé en deux compartiments (1) et (2) de même volume V=5L par une paroi escamotable.

Initialement, les deux compartiments contiennent deux gaz parfaits monoatomiques différents ($\gamma = 1,67$) à la même température T=298K. Le gaz contenu dans le compartiment (1) est à la pression p_1 =1bar, celui du récipient (2) est à la pression p_2 =2bar.

On supprime la paroi : les deux gaz se mélangent. Lorsque l'équilibre est établi, déterminer :

- 1. La température T' et la pression p' à l'état final
- 2. les pressions partielles des deux gaz
- 3. la variation d'entropie du système entre l'état initial et l'état final
- 4. la création d'entropie. Conclure.

Phases condensées

Exercice 5 : Echauffement d'un verre d'eau dans l'atmosphère

Un verre d'eau de 20,0mL à la température de 7°C est abandonné dans une pièce à 18°C jusqu'à l'équilibre thermique, réalisé à 18°C.

Calculer la variation d'entropie de l'eau, l'entropie échangée et l'entropie créée lors de cette évolution.

Données : capacité thermique massique de l'eau c_e=4185J.kg⁻¹.K⁻¹.

Exercice 6 : Mélange de deux volumes d'eau

On mélange dans un calorimètre adiabatique de capacité thermique négligeable un litre d'eau à la température θ_1 =10°C et un litre d'eau à la température θ_2 =30°C. Calculer la température finale T_f et la création d'entropie Sc.

Données : capacité thermique massique de l'eau c_e=4185J.kg⁻¹.K⁻¹.

Thermostats

Exercice 7: Echauffement d'un gaz au contact d'un thermostat.

Un récipient fermé dont les parois, rigides, sont perméables aux transferts thermiques contient un gaz parfait diatomique (γ =1,4) à l'état A (p_A =1,00bar; V_A =1,00L; T_A =293K). On place ce récipient dans une étuve portée à la température T_B =333K jusqu'à ce que l'équilibre thermique soit atteint.

Calculer la variation d'entropie du gaz, la variation d'entropie de l'étuve, la création d'entropie.

Exercice 8 : De l'irréversible au réversible.

- 1. Un bloc de cuivre de masse m, de capacité calorifique massique c et à température T_0 est plongé dans un lac à la température T_f .
 - a. Quel est l'état final du bloc de cuivre (température et volume)?
 - b. Calculer la variation d'entropie du bloc de cuivre puis celle du lac et enfin celle de l'ensemble : S_c . Préciser le signe de chacune de ces variations d'entropie en fonction de $x=T_0/T_f$.
- 2. Au lieu de faire passer directement le bloc de cuivre dans le lac à la température T_f , on le plonge d'abord dans un thermostat à température intermédiaire T_I . Calculer la variation d'entropie du bloc de cuivre puis la variation d'entropie totale du cuivre et des sources (entropie créée).
- 3. En réalité, on plonge le bloc de cuivre successivement dans N sources dont les températures T_i s'échelonnent régulièrement de T_0 à T_f (i=1,2,...). Calculer la variation d'entropie du bloc de cuivre entre l'état initial et l'état final, ainsi que la variation d'entropie totale du cuivre et des sources.
- 4. Etudier la limite quand N tend vers +∞. Interpréter.